

EmuStudio-v0
Author: Ben Vanik (ben at vanik dot net) : http://www.noxa.org

Release
date:

2004-02-07

Version: 0.1

Table of contents

About

Features

Usage

Known issues

Developer notes

Credits

Appendix: File formats

Appendix: Surface types

Appendix: Variables

Appendix: MIPSR3000(A)

[top] - About

Foreword: The goal of this project was the create a SPIM-like simulator for both school and
experience. It is not intended to be a SPIM replacement, containing significantly less
features and support (no floating points, for example), however it will run most basic
SPIM code that doesn't rely on user input. Originally I was going to build in a compiler as
well, and at this time it's about half done, but since it wasn't required by the assignment I
decided to wait on it.

Motivation: Required for "Computer Organization" (CDA3103 @ UCF), as well as a desire to learn
more about emulation. The assignment required 5% of what EmuStudio-v0 currently is,
but I learned a lot more this way.

Future
plans:

Rewrite of the system from scratch using C#. This will allow for better design, greater
flexibility, and will motivate me to code more architectures (x86, etc).

[top] - Features

TODO: Write something here

[top] - Usage

Concepts: Fragment: A general purpose text/data environment. Contains memory (code and
data), runtime and debug information.
Parser: Subsystem that will take an input file in a given format and build a
fragment from it.
Compiler: Subsystem that will take an input file, compile it, and build a fragment
from it.
Processor: Architecture-specific processor; interprets and executes code.
Execution engine: Logical code structure that uses a Processor on a Fragment to
run an application.
Surface: Display output for various systems. See Appendix: Surface types for an
overview.

Page 1 of 6EmuStudio-v0 readme

2/7/2004

http://www.noxa.org
http://www.ucf.edu

Console: Interactive command line interface for user control.

Flow: 1. Check fragment generation mode
a. Compile -> store fragment
b. Parse -> store fragment

2. Create processor/support
3. Check run mode

a. Auto
i. Execute code
ii. Dump all

b. Interactive
i. Get and act on user command
ii. Repeat until exit

4. Cleanup

Command
line:

Examples:

Usage: Entry [-arch architecture] [-auto [dump]] {-compile | (-parse
format)} filename

arch (optional)

Description:
Specify the architecture to use. Pass nothing to see a list of available
architectures.

Example: -arch MIPSR3000

auto (optional)

Description:

Enable automated execution. If this is given, instead of dropping to the
interactive console the 'run' command will be issued right after
parsing/compilation and the simulator will exit after it's completion. If
'dump' is specified then after execution a 'dump all' will be performed.
Note: 'directconsole' is set to 1 when 'dump' is not specified, and 0 when it
is.

Example: -auto dump

compile (exclusive)

Description:
Set mode to compile - 'filename' will be assumed to be source and will be
compiled into a fragment.

Example: -compile

parse (exclusive)

Description:
Set mode to parse - 'filename' will be assumed to be of valid parse format
for the 'format' specified. Pass nothing to see a list of available formats, or
see Appendix: File formats.

Example: -parse simple

filename

Description: The input file for the compile/parse.

Example: test.o

Entry -auto dump -parse simple test.o

Parse (using the simple format) 'test.o' and automatically run
it, dumping all info when done.

Entry -compile source.asm

Compile 'source.asm' and enter the interactive console.

Interactive
console:

Supported commands

exit

Description: Exit execution engine.

Page 2 of 6EmuStudio-v0 readme

2/7/2004

Usage: exit

Example: exit

help

Description: Display command list or help on a particular command.

Usage: help [command]

Example: help run

reset

Description:
Reset the processor context. Depending on the architecture this may or
may not reset memory - do not assume it is clean.

Usage: reset

Example: reset

run

Description:
Execute until breakpoint, error, or done - display extra information if 'v'
set (for 'verbose'). This will pick up from the current position; to start from
the beginning, perform a reset first.

Usage: run ['v']

Example: run v

step

Description: Execute one instruction - display info if 'v' set (for 'verbose')

Usage: step ['v']

Example: step v

peek

Description: Display instruction that will be executed next.

Usage: peek

Example: peek

dump

Description:
View the given surface or a list of surfaces if none specified. See available
surfaces and parameters in Appendix: Surface types.

Usage: dump [class [params]]

Example: dump registers

vars

Description:
List all settings and values. See Appendix: Variables for information on a
specific variable.

Usage: vars

Example: vars

set

Description:
Set the value of the given setting. See Appendix: Variables for information
on a specific variable.

Usage: set [var value]

Example: set directconsole 1

.

Description: Repeat last command.

Page 3 of 6EmuStudio-v0 readme

2/7/2004

Examples:

Usage: .

Example: .

-> set directconsole 0
-> run
-> dump console

Disable direct console printing, execute the code, and dump
the results on the console surface.

-> peek
-> step v
-> .
-> .
-> run
-> reset
-> peek

View the next instruction waiting to execute, step into it (and
print debug info), repeat the step (x2), finish running the
program, reset the processor, view the next instruction
waiting to execute (should be the same as the first peek).

[top] - Known issues

arch.Segment This class should really throw exceptions (ie, java.lang.IndexOutOfBoundsException);
as of now it just fails gracefully.

arch.Compiler The entire compile system is currently not implemented; this includes any support
code like in Entry. It's about 40% completed - a little more work and it will be done.

[any] There is no way for a Processor to get input from the user. It would be useful to add
a callback system to allow this.

[top] - Developer notes

Tools
used:

Java runtime: Sun Java JRE SE 1.4.2_03-b02

Java IDE: IBM Eclipse M6 w/ Metrics 1.3.4

Text editor: Microsoft Visual Studio.NET 2003

Hex editor: 010 Editor

Environment: Cygwin 1.5.7-1 on Microsoft Windows XP SP2

Time to
complete:

4 straight days

Classes: 96

Lines of
code:

3227

[top] - Credits

Design,
coding:

Ben Vanik (ben at vanik dot net) : http://www.noxa.org

Int**ToHex: Dr. Ricardo Lent : rlent@cs.ucf.edu (?)

MIPS

Page 4 of 6EmuStudio-v0 readme

2/7/2004

http://java.sun.com/
http://www.eclipse.org/
http://metrics.sourceforge.net/
http://msdn.microsoft.com/vstudio
http://www.sweetscape.com/010editor/
http://www.cygwin.com/
http://www.microsoft.com/windows
mailto:rlent@cs.ucf.edu
http://www.noxa.org

reference: Computer Organization and Design, 2nd ed.; Hennessy and Patterson

Background
noise:

Sakamoto Maaya (my hero!) - some mp3's/info here

[top] - Appendix: File formats

Binary: Not yet implemented

Debug: Not yet implemented

Simple:

Address: Hexadecimal 32-bit memory address to load data at (the first address is
assumed to be the text entry point)
Data: Hexadecimal 32-bit word data
Extra: All text until the end of the line will be attached to the address

This format allows for sparse memory segments. This is useful when defining clear text
and data regions.
Example:

In this example, the range from 0x00001008 to 0x0000F0F0 will not be explicitly
allocated.

Note this format is not strict - one may omit the '0x' prefix on the hex numbers, as well as
provide wrapping braces ('[', ']') around the address (this makes copying and pasting from
SPIM painless).

address data [extra]
address data [extra]
...

0x00001000 0x00000000 // text
0x00001004 0x00000000 // text
0x0000F0F0 0xFFFFFFFF // data
0x0000F0F4 0xFFFFFFFF // data
.....

Serialized: Not yet implemented

[top] - Appendix: Surface types

All: Description: Display all surfaces
Parameter: Not used

Registers: Description: Current processor context - fields dependent on architecture
Parameter: Not used

 PC : 0x0040013C HI : 0x00000001 LO :
0x00000005
00 ($0): 0x00000000 11 ($t3): 0x00000000 22 ($s6):
0x00000F0F
01 ($at): 0x000F0000 12 ($t4): 0x00000000 23 ($s7):
0x0000001A
...

Status: Description: Runtime statistics - fields dependent on architecture
Parameter: Not used

Instructions executed: 219
JIT hits: 158
JIT faults: 61
Memory allocated: 1966080b
Memory accesses: 111
.....

Code:
Description: Code trail - instructions in the order they were executed - format dependent

Page 5 of 6EmuStudio-v0 readme

2/7/2004

http://www.jvcmusic.co.jp/maaya/
http://www.maayasakamoto.net/

on architecture
Parameter: Not used

Address Data JIT Src Code
0x00400000 0x3C011001 [JF] in:1 [disabled/na]
0x00400004 0x34280058 [JF] in:2 [disabled/na]
0x00400008 0x8D080000 [JF] in:3 [disabled/na]
.....

Memory: Description: Memory map (if no parameter passed) or memory locale (if valid address
passed)
Parameter: Memory address in hex format to view around - i.e., say you give address
0x10040D04, the system may print memory from the range 0x10000000 to 0x100F0000
Note: Large ranges of empty memory will be collapsed into a single line

-or-

[memory locales currently allocated]

0x0FFF0000-0x10010000 = 0x00000000
0x10010000 0x73696854 0x20736920 0x65742061
0x6F0A7473
0x10010010 0x72702066 0x5F746E69 0x69727473
0x000A676E
.....

Debug: Description: Architecture-specific debug surface
Parameter: Dependent in implementation

Console: Description: Output from the processor
Parameter: Not used

[top] - Appendix: Variables

directconsole: boolean: When enabled (1), all console output from the processor will go directly to the
user console and not to the console surface. This is enabled by default to make quick
execution easier, but is disabled during automated dumps because it makes things
easier to read.

emitsource: boolean: When enabled (1), any associated information/source will be attached to a
line and displayed on the code surface. Since this can get messy, it is disabled by
default.

[top] - Appendix: MIPSR3000(A)

Unsupported: copX, syscall input, lwl, lwr, swl, swr, lwcX, swcX - probably more

Known
issues:

lh/sh don't currently twiddle
$gp, $fp don't get set right
Use of stacks is currently untested (probably doesn't work)
Segment does not check chunk boundaries on multi-byte read/writes (syscall
print_string may be bad too)
Signed/unsigned stuff has been ignored! There are probably a ton of places this
will mess things up! Sign extension may be flakey as well

Future plans: Implement everything, test everything - finish the compiler!

Page 6 of 6EmuStudio-v0 readme

2/7/2004

	About
	Features
	Usage
	Concepts
	Interactive console
	Flow
	Command line

	Known issues
	Developer notes
	Credits
	Appendix
	File formats
	Surface types
	Variables
	MIPSR3000(A)

